Speed comparisons for Arduino Uno/Nano, Due, Teensy 3.5 and ESP32

It’s been more than a year since I published my post on numerical integration on an Arduino. Since then, the post has been quite popular, recieving a steady stream of visitors (mostly via Google). When I originally wrote it, I only had an Arduino Uno at hand – since then I’ve added a couple of Nanos and lately an Arduino Due to my inventory and decided it would be interesting to do a couple of speed tests to see how they perform. The latest addition to my growing circus of microcontroller boards is a Teensy 3.5 board. (Update May 2019: Added a ESP32 dev board)

As I pointed out in the original post, numerical integration relies heavily on floating-point math – which is something the Arduino’s 8-bit processor is not particularly good at. The Due features a 32-bit processor, a clock frequency of 84 instead of 16 MHz and the possibility to use double (64 bit) instead of float (32 bit) as a data type – so I was curious to see how it would compare to the Arduino Uno. The Nano is supposed to have more or less the same characteristics as an Uno, but is a lot smaller and cheaper – see below for details.

Now added to the comparison, the Teensy 3.5 includes a 32-bit processor with 120 MHz clock speed and a FPU for speedier floating-point math.

Continue reading “Speed comparisons for Arduino Uno/Nano, Due, Teensy 3.5 and ESP32”

Raspberry pi: Video and Audio recording and streaming guide

I’ve spent some time on setting up audio and video streaming on my raspberry pi (mostly used as a baby monitor right now). While there are great ressources out there, it took me a lot of effort to find them and put everything together. So here’s a handy list of instructions if you want to:

  • Record and stream audio
  • Record and stream both audio and video into one file
  • Are just looking for an introduction into the topic.

Continue reading “Raspberry pi: Video and Audio recording and streaming guide”